Home Bulletin detail

Unlocking the Potential of Radiative Cooling for Photovoltaic Modules

2024-11-20 09:28

Wedoany.com Report-Nov 20, Radiative cooling is an emerging technology that holds the potential to enhance the performance and longevity of PV modules. Researchers from the Institute of Nanotechnology of Lyon explain how this technology may reach commercial maturity.

The partial conversion of sunlight into electricity by solar panels results in their heating, with temperatures rising to 50‐60 C, which significantly reduces both their efficiency and lifespan. Managing this heat is essential for maintaining the performance and durability of photovoltaic systems as they expand globally.

Imagine a world where solar panels achieve unprecedented efficiency by leveraging the natural cooling power of the sky. This isn’t a futuristic concept – radiative cooling is an emerging technology that holds the potential to enhance the performance and longevity of PV modules, making this vision a reality.

Because PV systems have large surfaces oriented toward the sky, they are ideal candidates for this technique, which takes advantage of the Earth's atmospheric transparency in the 8‐13 μm range to enhance radiative heat transfer. In practice, improving radiative cooling systems

(RCS) involves fine‐tuning optical absorption and thermal emission in the infrared range while minimizing the absorption of sub‐bandgap photons.

To achieve this, several scientific and technical challenges must be overcome. These include maintaining high absorption in silicon solar cells across the 0.3‐1.1 μm spectral range through improved optical designs of the PV module and optimizing thermal emission in the infrared range beyond the band gap (λg=1.1 μm).

However, the true appeal of radiative cooling lies in its simplicity and sustainability. Unlike conventional cooling methods that often require energy and complex systems, radiative cooling works passively, powered by its interaction with the surrounding environment. It aligns perfectly with the principles of renewable energy—clean, efficient, and endlessly renewable.

Recent advancements in radiative cooling show great promise for improving PV module efficiency. For example, silica photonic crystals have been shown to lower the temperature of silicon PV absorbers by up to 13 C. Likewise, pyramid structures made from polydimethylsiloxane (PDMS) have proven effective in enhancing broadband thermal emission, further improving cooling efficiency.

Building on these innovations, recent research has demonstrated that applying a multi‐layer coating of titanium oxide (TiO2) and silicon oxide (SiO2) can reduce PV module temperatures by 3 C while increasing power output by 4.6 W/m².

Another promising approach involves a V‐shaped, double‐sided radiative cooling design, which has been shown to reduce PV module operating temperatures by up to 10.6 C, leading to a substantial increase in output voltage by 0.80 V.

These findings highlight the diverse strategies being explored to optimize thermal management in PV systems, paving the way for more efficient and durable solar energy solutions.

In conclusion, radiative cooling is more than just a technological innovation; it exemplifies how natural forces can be harnessed to advance renewable energy. By utilizing the cooling power of the sky, passive heat management will be essential in maximizing the potential of our solar resources, ensuring that the energy captured from the sun is used as efficiently as possible.

This newsletter is compiled and reprinted from the global Internet and strategic partner information, and it is only for readers' communication. If there are any infringements or other issues, please inform us timely, this site will be modified or deleted. Email: news@wedoany.com
Negotiable
Rural revitalization project-Heshengyuan Village, Pingyin County
Negotiable
Rural revitalization project-Qingzhou Shaozhuang Project
Negotiable
Rural revitalization project-Shejiaping Town, Qingjian County, Yulin City, Shaanxi Province
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Yangzhou JA Energy Storage 744KWh
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Jining University Energy Service Project
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-State Grid Xuancheng City Power Supply Company Carport Light Storage and Charging Integration Project
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Jiangsu Renesas Semiconductor 4.5MWh Project
Negotiable
Operation and maintenance project-Ebmpapst (Xi’an) 1.45MW Distributed Photovoltaic Power Generation and Operation & Maintenance Project
Negotiable
Operation and maintenance project-Rudong County Whole-County Rooftop Distributed Photovoltaic Power EPC General Contract and Operation & Maintenance Project (Phase 1 for Farmers) 60MW
Negotiable
Independent design-Design of Hainan East and West Canal Dalong Reservoir
Negotiable
Independent design-Fugu Photovoltaic Power Generation Project
Negotiable
Foreign enterprise project-Shanghai Yusen 1.3MW Project
Negotiable
Foreign enterprise project-Shimadzu Hydraulic 1.19MW Photovoltaic Project
Negotiable
Foreign enterprise project-Kobe Steel Aluminum 1.68MW Project
Negotiable
Foreign enterprise project-China Otsuka Pharmaceutical 2MW Project
Negotiable
Distributed project-Jiyang Wormhole 2MW Photovoltaic Project
Negotiable
Distributed project-Jiangxi Guofeng 8.5MW Distributed Photovoltaic Power Generation Project
Negotiable
Distributed project-Geely Zeekr Automotive Factory District 46MW Project
Bulletin
Mercedes Benz eCitaro Fuel Cell: “H2 Mode”: New Operating Mode for All-Hydrogen Operation Latin America Shows Rising Interest in Chinese NEVs GAFI Hosts Japanese Delegation to Advance Green Energy Technology and Hydrogen Localization Californian Lithium Sulfur Battery Maker Lightens the Load for Northvolt Solar Developer Secures $145 Million Solar-Plus-Storage Project in New Mexico 11.25m Investment to Expand GridBeyond Storage Projects Triodos Energy Transition Europe Fund Commits EUR 11.25 Million in Next Phase of Partnership With GridBeyond New Partnership Commissioned to Accelerate Roll-Out of National Heat Network Needed to Meet Net Zero Goals European Hydrogen Week Commences in Brussels, Highlighting Industry Innovations and Regulatory Challenges AZAL Partners With CarbonClick to Offer Fully Integrated Carbon Offsetting Solution for Passengers Autonomous Hydrogen-Powered Mining Truck Achieves Test Successes in China New MIT Spinout Offers Scalable Solution to Convert Methane Into Green Fuels Japan’s MOL and KEPCO Partner to Explore Liquid Hydrogen Carriers MAHLE to Supply Critical Components for MAN’s 2025 Hydrogen Truck Fleet Heraeus Expands Hydrogen Portfolio With Actydon Product Line Burges Salmon Advises on Financing for Atlantic Green’s BESS StreamTec Joins Gasgrid for Baltic Hydrogen Infrastructure Development Iran to Stop Producing Near Bomb-Grade Uranium, IAEA Says EIG’s Fidra Energy and Sungrow Enter Into Strategic Partnership UKOG Secures Funding for Strategic Hydrogen Storage Site in East Yorkshire