Home Bulletin detail

Japan Launches FAST Fusion Project

2024-11-13 15:24

Wedoany.com Report-Nov 13,  FAST, to be sited in Japan, aims to generate and sustain a plasma of deuterium-tritium (D-T) reactions, demonstrating an integrated fusion energy system that combines energy conversion including electricity generation and fuel technologies. The project will employ a tokamak configuration, chosen for its well-established data and scalability. The project brings together top researchers from prominent institutions, along with industrial and international partners from Japan, the UK, the USA and Canada.

Targeting a power generation demonstration by the end of the 2030s, FAST will address remaining technical challenges enroute to commercial fusion power plants. The FAST Project Office notes that power generation refers to producing energy from fusion reactions, but does not imply net positive power production where electricity output exceeds electricity consumption.

"While previous or near-term planned fusion experiments have achieved, or will soon achieve, medium-pulse plasma discharges to de-risk the plasma confinement and control for a fusion pilot plant, critical obstacles remain in harnessing the energy transport for sustained external use, establishing the tritium fuel cycle, including tritium breeding, and integrating these advances into a configuration that represents a commercially viable fusion power plant," the project office said. "At present, no experimental device worldwide is capable of creating the necessary fusion environment - the fusion neutron flux and relevant thermal loads - to bridge the gap between the advanced plasma experiments of today and the desired end goal of practical energy extraction."

FAST aims to fill these gaps by "providing a comprehensive and unique platform to develop technologies applicable to practical fusion power plants worldwide, including demonstration devices and fusion pilot plants".

FAST adopts a tokamak configuration, which the project office says is "a well-established plasma confinement method with the most extensive database and specifically employs a low-aspect-ratio tokamak design, and high-temperature superconducting (HTS) coils, which enables a compact design allowing lower costs and a shorter construction time".

The system aims for a power generation of 50 to 100 MW and a discharge duration of 1000 seconds of D-T fusion burn. High-temperature blankets enable testing of multipurpose uses for thermal power and neutrons. The device is planned to operate for a cumulative 1000 hours of full-power operation.

"The FAST project will advance through collaboration with key universities and research institutions both domestically and internationally," the project office said. "Moving forward, a conceptual design team will be organised, composed of plasma researchers and power plant engineering researchers. The preliminary design is expected to be completed within the year 2025. A thorough evaluation of the internal and external environment, including technology, funding, regulation and policy, will be conducted at the transition to detailed design, where a decision will be made on the feasibility of execution.

"In parallel, led by Kyoto Fusioneering, we will accelerate technology development in key systems, engineering design, site selection, and regulatory efforts in collaboration with industrial partners such as Mitsui & Co Ltd, Mitsui Fudosan Co Ltd, Mitsubishi Corporation, Marubeni Corporation, Fujikura Ltd, Kajima Corporation and Furukawa Electric Co Ltd. We will continue to actively welcome researchers, industrial partners, including companies participating in J-Fusion, and international collaborators to join and contribute to the project."

This newsletter is compiled and reprinted from the global Internet and strategic partner information, and it is only for readers' communication. If there are any infringements or other issues, please inform us timely, this site will be modified or deleted. Email: news@wedoany.com
Negotiable
6000mAh super capacitor battery 21700 electronic spray 4.2V6000F electric logistics vehicle electric two wheeled tricycle battery flashlight electric toy car
Negotiable
4.2V supercapacitor battery 2000F electric vehicle can be used about 20000 times. Application scenarios can be selected and customized
Negotiable
Original factory direct sales energy storage group 3.6V2000F graphene supercapacitor 2.7V 3000F Farad supercapacitor 18650 guide needle
Negotiable
186500S flat top rechargeable battery 4000mAh graphene supercapacitor battery 3.6V charging power supply
Negotiable
48V51.2V200ah10kw 15 degree household solar photovoltaic supercapacitor battery energy storage wall mounted supercapacitor battery
Negotiable
Graphene supercapacitor battery 4.4V emergency start 4000F energy storage cell soft pack super start power supply
Negotiable
18650 Capacitor Battery 2500mAh 2.7V 3.7V 4.2V 3000mAh Outdoor Charging Refrigerator Safety Protection and Other Applications Wide Power Nuclear New Energy Supercapacitors Supercapacitors Supercapacitors 18650
Negotiable
GHenergy Graphene 3.0V Supercapacitors 3000F Bolt Cylindrical Start up Energy Storage Power Supply Photovoltaic Energy Storage Used Over 100000 Times
Negotiable
GHenergy drone super battery 4.2V4000F, extended range, fully charged energy storage power supply, agricultural drone inspection drone aerial photography drone 18650 supercapacitor
Negotiable
Graphene supercapacitor 3.6V, small size 2000F, large capacity, low temperature resistance, non motor vehicle charging, new energy emergency charging customization, etc
Negotiable
3.0V graphene supercapacitor 500F supercapacitor power battery, super safe, ultra long battery life
1425 1425USD/PCS/sample
Safe, efficient, intelligent energy storage, creating smart homes and making life more convenient# Home Energy Storage # Supercapacitors # Energy Storage # Wall Mounted # Safe Electricity Use
Negotiable
Intelligent mowing robot