Home Bulletin detail

Scientists Create ‘Affordable’ Teg-PV Generator for Off-Grid, Low-Power Applications

2024-11-21 10:11

Wedoany.com Report-Nov 21, Scientists in Malysia have tested a system that combines a PV panel and thermoelectric generators (TEGs) and have found it offers potential for “moderate” nighttime power generation. It is suitable for small household applications such as LED lights, laptops, phone chargers, and wireless routers.

Malaysia’s Multimedia University researchers have designed and analyzed a novel hybrid system that integrates PV with thermoelectric generators (TEGs). While the PV panel produces power during the day, the TEG utilizes temperature differences around the cell to produce electricity at night.

TEGs can convert heat into electricity through the “Seebeck effect,” which occurs when a temperature difference between two different semiconductors produces a voltage difference between two substances. The devices are commonly used for industrial applications to convert excess heat into electricity. However, their high costs and limited performance have thus far limited their adoption on a broader scale.

“While previous studies have primarily focused on enhancing the daytime efficiency of PV-TEG systems, or study explores the impact of TEG surface area and series configurations specifically for nighttime applications,” the research's corresponding author, Chan Kah Yoong, told pv magazine. “The research aims to bridge the gap in the existing literature by demonstrating how larger TEG areas and optimized configurations can significantly enhance nighttime power output, offering a sustainable solution for continuous energy generation.”

In their testing, the team placed a heater under the heat sink to control and simulate different temperature differences. Three different TEG surface areas were tested: one system measuring 3 cm × 3 cm; another one with a size of 4 cm × 4 cm; and and two TEG connected in series measuring each 4 cm × 4 cm. The PV cell to which they were attached was a polycrystalline device with an operating voltage of 9 V and a working current range of 0–100 mA, capable of producing a peak power of 1 W.

“The 3 cm x 3 cm TEG can produce up to 0.9 mW of power when the temperature difference reaches 55 C, while the 4 cm x 4 cm TEG has a maximum power of 3.8 mW,” the academics said. “The two quantities of 4 cm × 4 cm TEG in series have double the output power compared to 4 cm × 4 cm TEG. The maximum power here reaches 7.7 mW.”

In all three TEG cases, the maximum power produced was just above zero when the temperature difference was minimal at 5 C. In the 3 cm x 3 cm TEG, the peak voltage was 114.9 V, and the peak current was 8.67 A. The peak voltage for the 4 cm × 4 cm TEG was 180.2 V, and the peak current was 21.5 A. In the case of two TEGs connected in series, the maximum voltage was 340.4 V, while the peak current was about 21.5 A.

“This research demonstrates how the system is useful and affordable,” the team concluded. It also noted that if a PV system with a double 4 cm × 4 cm TEG is placed on the average U.S. roof with a free area of 1,500 square feet, the TEGs alone would produce an additional 375 W of power.

“The system could be used for some household appliances such as desktops, laptops, phone chargers, LED TVs, and lighting,” Yoong said. “Its potential scalability suggests that, with adequate rooftop space, a significant amount of energy could be generated at night.”

The system was presented in the study “Solar-based nighttime electric power generator based on radiative cooling,” published in Energy Reports.

This newsletter is compiled and reprinted from the global Internet and strategic partner information, and it is only for readers' communication. If there are any infringements or other issues, please inform us timely, this site will be modified or deleted. Email: news@wedoany.com
Negotiable
Rural revitalization project-Heshengyuan Village, Pingyin County
Negotiable
Rural revitalization project-Qingzhou Shaozhuang Project
Negotiable
Rural revitalization project-Shejiaping Town, Qingjian County, Yulin City, Shaanxi Province
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Yangzhou JA Energy Storage 744KWh
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Jining University Energy Service Project
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-State Grid Xuancheng City Power Supply Company Carport Light Storage and Charging Integration Project
Negotiable
Photovoltaic energy storage and charging, integrated smart energy project-Jiangsu Renesas Semiconductor 4.5MWh Project
Negotiable
Operation and maintenance project-Ebmpapst (Xi’an) 1.45MW Distributed Photovoltaic Power Generation and Operation & Maintenance Project
Negotiable
Operation and maintenance project-Rudong County Whole-County Rooftop Distributed Photovoltaic Power EPC General Contract and Operation & Maintenance Project (Phase 1 for Farmers) 60MW
Negotiable
Independent design-Design of Hainan East and West Canal Dalong Reservoir
Negotiable
Independent design-Fugu Photovoltaic Power Generation Project
Negotiable
Foreign enterprise project-Shanghai Yusen 1.3MW Project
Negotiable
Foreign enterprise project-Shimadzu Hydraulic 1.19MW Photovoltaic Project
Negotiable
Foreign enterprise project-Kobe Steel Aluminum 1.68MW Project
Negotiable
Foreign enterprise project-China Otsuka Pharmaceutical 2MW Project
Negotiable
Distributed project-Jiyang Wormhole 2MW Photovoltaic Project
Negotiable
Distributed project-Jiangxi Guofeng 8.5MW Distributed Photovoltaic Power Generation Project
Negotiable
Distributed project-Geely Zeekr Automotive Factory District 46MW Project